A new proof of proximinality for $M$--ideals
نویسندگان
چکیده
منابع مشابه
A NEW PROOF OF THE PERSISTENCE PROPERTY FOR IDEALS IN DEDEKIND RINGS AND PR¨UFER DOMAINS
In this paper, by using elementary tools of commutative algebra,we prove the persistence property for two especial classes of rings. In fact, thispaper has two main sections. In the first main section, we let R be a Dedekindring and I be a proper ideal of R. We prove that if I1, . . . , In are non-zeroproper ideals of R, then Ass1(Ik11 . . . Iknn ) = Ass1(Ik11 ) [ · · · [ Ass1(Iknn )for all k1,...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولA New Proof of FDR Control Based on Forward Filtration
For multiple testing problems, Benjamini and Hochberg (1995) proposed the false discovery rate (FDR) as an alternative to the family-wise error rate (FWER). Since then, researchers have provided many proofs to control the FDR under different assumptions. Storey et al. (2004) showed that the rejection threshold of a BH step-up procedure is a stopping time with respect to the reverse filtration g...
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملA combinatorial proof of Gotzmann's persistence theorem for monomial ideals
Gotzmann proved the persistence for minimal growth for ideals. His theorem is called Gotzmann’s persistence theorem. In this paper, based on the combinatorics on binomial coefficients, a simple combinatorial proof of Gotzmann’s persistence theorem in the special case of monomial ideals is given. Introduction Let K be an arbitrary field, R = K[x1, x2, . . . , xn] the polynomial ring with deg(xi)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2007
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-06-08701-6